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Abstract
When conducting experimental research, the research ques-
tions are often inherently linked (and limited) to the paradigm
that is used. In this paper, we present a new experimental tool
– GRIS (Generating Representations in Space) – that builds
experiments where participants can manipulate objects on a
screen. Through a series of three experiments on sentence ac-
ceptability, category typicality, and multi-dimensional similar-
ity, we demonstrate how GRIS-based experiments allow cog-
nitive scientists to approximate representational spaces for a
variety of cognitive phenomena, expanding the set of possible
research questions that cognitive scientists may ask.
Keywords: acceptability, typicality, similarity, paradigm, rep-
resentations

Introduction
For decades, cognitive scientists have conducted experiments
to further our understanding of the mind, using a variety
of behavioral paradigms (e.g., Stroop task, memory tasks,
reading tasks, etc.), brain-imaging techniques (e.g., EEG,
fMRI), and computational models (e.g., recurrent networks,
Bayesian models, etc.), among others. However, such re-
searchers are constrained by the tools, methodologies, and
resources that are available to them. For example, while vec-
tor representations of computational models of language are
often assumed to approximate linguistic meaning in humans,1

we do not have access to the comparable representations that
humans may use. In this paper, we introduce a new experi-
mental tool that approximates representational spaces for
cognitive phenomena.

GRIS2 (Generating Representations In Space) builds web-
based human experiments which allow participants to explic-
itly construct representational spaces for many different kinds
of stimuli. As we will show in a series of three experiments,
GRIS-based experiments can be used to both replicate prior
studies and allow for novel investigations that would have
been challenging to construct using established behavioral
paradigms.

An Overview of GRIS
In simplest terms, GRIS is a tool that builds experiments
where participants drag-and-drop objects on a canvas. Ob-

1See Wang, Wang, Chen, Wang, and Kuo (2019) for an overview.
2Use the GRIS-toolkit to build GRIS experiments:

https://github.com/johnstarr-ling/gris-toolkit. Cur-
rently, GRIS builds experiments for PC Ibex (Zehr & Schwarz,
2018).

This is a table.

Want to write, Randy did a novel.

This is table.

MOST
ACCEPTABLE

LEAST
ACCEPTABLE

Randy wanted to write a novel.

Figure 1: Sample trial for Experiment 1 (Acceptability); font
size enlarged to improve readability. More acceptable sen-
tences should be placed towards the top; less acceptable sen-
tences should be placed near the bottom.

jects can be text, audio, and images; multi-modal designs
(e.g., experiments that move both text and images in the same
trial) are also supported. Both objects and the canvas can be
labeled according to the researcher’s relevant question: we
demonstrate how canvases can be both region-defined (Ex-
periment 1) and position-defined (Experiments 2 & 3). Im-
portantly, GRIS can accommodate a wide variety of experi-
mental paradigms and designs beyond those proposed in this
paper: we discuss some possible avenues of investigation in
the General Discussion section.

In the following three sections, we describe a series of three
experiments which display how GRIS can be used to better
approximate cognitive representational spaces: Experiment 1
studies sentence acceptability, Experiment 2 investigates cat-
egory typicality, and Experiment 3 probes multi-dimensional
similarity relationships.

Experiment 1: Sentence Acceptability
Sentence acceptability judgments probe what sentences are
(un)acceptable in a language. While some sentences are
rated toward the boundaries (“*An girls is hungry”), oth-
ers display gradience: “Randy wanted to write a novel” is
judged as more acceptable than “Want to write, Randy did a
novel”, even though both are acceptable. Prior work mostly



collects acceptability judgments using Likert scales (Gibson,
Piantadosi, & Fedorenko, 2011), forced-choice tasks (Ma-
howald, Hartman, Graff, & Gibson, 2016), or response times
Konieczny (2000): in isolation, sentence acceptability judg-
ments appear to be robust across experimental paradigms
(Sprouse, 2011; Sprouse, Schütze, & Almeida, 2013). How-
ever, these measures do not always capture the relative rela-
tionship between sentences: in a forced-choice task, people
express consistent preferences (“Randy wanted. . . ” > “Want
to. . . ” > “*An girls. . . ”), but each pairwise preference may
reflect a different underlying scale.

In this study, we use GRIS to replicate sentence acceptabil-
ity judgments from prior work, while also showing how plac-
ing sentence pairs in different contexts with other sentence
pairs can significantly alter their acceptability ratings.

Design & Procedure
Stimuli All stimuli were drawn from Sprouse et al. (2013),
which randomly sampled informal (i.e. not experimentally-
tested) acceptability judgments of English sentence pairs
from Linguistic Inquiry, a well-established linguistics jour-
nal. After sampling these sentence pairs, Sprouse et al. (2013)
collected acceptability ratings for each sentence within each
pair to test whether the informal judgments were valid for
larger populations; we will use these ratings to confirm that
our findings correlate with prior work.

We sampled 72 pairs from the Sprouse et al. (2013) dataset.
All 72 sentence pairs were classified according to the general
linguistic phenomenon that their original paper tested; these
classifications were drawn from the abstracts of the papers
themselves. By determining the linguistic phenomenon that
each pair tests, we can then combine pairs of different clas-
sifications to understand how different syntactic phenomena
influence sentence acceptability. Sample classifications are:
Word Order, Definites, Movement.

From this set of 72 sentence pairs, we randomly selected
24 sentence pairs to serve as our target pairs: all participants
saw each of these 24 sentence pairs. The remaining 48 items
were broken into two sets of 24 sentences, each of which was
paired with the 24 example items so that each target pair could
appear in context with different phenomena. In sum, this pro-
cess led to two sets of 24 items with four sentences (two pairs)
each.

Procedure See Figure 1 for a sample trial for Experiment
1. Participants saw four sentences below a gradiently-colored
canvas, where the color gradient reflects a 5-point Likert
scale. Participants were instructed to move the sentences
from the bottom of the screen onto the canvas according to
how “acceptable” the sentences were, according to their in-
tuitions. Participants were told that the “most acceptable”
sentences should be placed at the top of the canvas (5, on a
standard Likert scale), while the “least acceptable” sentences
should be placed at the bottom (1, on a standard Likert scale).
They were also told that multiple sentences could occupy the
same level on the scale. Sentence positions below the canvas

Figure 2: Base acceptability results for Experiment 1.
Notches indicate 95% bootstrapped CIs.

were randomized for each item.

Participants Twenty-five participants were recruited using
the online research platform Prolific. Participants were all
native speakers of English between the ages of 18 and 55.

Results
Base Acceptability To measure sentence acceptability
judgments within each trial, we collected the final position
of all sentences once the trial was complete. We z-scored ac-
ceptability ratings by participant to ensure that participants
were being compared on similar scales.

Results for Experiment 1 are visualized in Figure 2. To test
whether acceptable sentences were rated significantly higher
than unacceptable ones, we fit a linear mixed-effects model
to the z-scored acceptability rating, with a fixed effect of sen-
tence TYPE (acceptable/unacceptable), and random intercepts
for participants and items.3 We find that participants rated the
ACCEPTABLE sentences as significantly more acceptable than
the UNACCEPTABLE ONES (β = -0.184, SE = 0.031, t=-58.80,
p <0.001); these sentence ratings also strongly correlate with
those found by Sprouse et al. (2013, r=0.88).

Contextual Acceptability In addition to the basic accept-
ability analyses in the previous section, we measured how ac-
ceptability differences varied within each target pair accord-
ing to the classification of the context pair that was present in
the trial. To do so, we calculated the difference between each
sentence in the target pair, then averaged the ratings within
each context classification.

Results for contextual acceptability differences are shown
in Figure 3. We find that some phenomena display similar
levels of acceptability (<0.5 difference) regardless of con-
text (e.g. Agreement, Definites), while others show significant
variation (e.g. Movement, Word Order, Clause). For example,

3The complete model formula was: Z-SCORED RATING ∼ TYPE
+ (1 | item) + (1 | participant). The baseline was the “Acceptable”
condition.



Figure 3: Contextual acceptability results for Experiment 1.
X-axis represents the classification for the target pair. Y-
axis represents the classification of the context pair. Cells
indicate difference between acceptable and unacceptable sen-
tences within each target pair; darker colors indicate smaller
differences on a 5-point Likert scale.

consider the Word Order classification for the target pair (e.g.,
Fred mowed the green lawn > Fred mowed the lawn green).4

When placed in the context of a sentence pair that modulates
Definites (e.g. This is a table > This is table), the difference
between the green lawn and lawn green sentences was ap-
proximately 2.1 on a 5-point Likert scale; but, when placed in
the context of a sentence pair that modulates Movement (e.g.,
Randy wanted to write a novel > Wanted to write, Randy did a
novel), the difference between the green lawn and lawn green
sentences was approximately 2.8. These varying differences
have significant consequences on how researchers interpret
acceptability judgments: a difference of ∼3 points on a 5-
point Likert scale easily distinguishes an acceptable sentence
(5) from an unacceptable one (2), whereas a difference of ∼2
points could be the distinction between a totally acceptable
sentence (5) and an average sentence (3).

Discussion
The results of this task show that GRIS can be used to reli-
ably replicate prior results, while also systematically captur-
ing the variability of sentence acceptability in different con-
texts. More specifically, GRIS reveals how previous isolated
judgments of sentence acceptability may not serve as reliable
representations of overall processing acceptability.

Experiment 2: Category Typicality
Category typicality assesses how “typical” an object is within
a broader category (Farmer, Christiansen, & Monaghan,
2006; Rosch, 1975). For example, “robins” and “sparrows”

4While the example provided here does introduce a resultative
construction, the primary arguments of the original paper discuss
the construction’s implications on word order.
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Figure 4: Sample trial for Experiment 2 (Typicality); font
size enlarged to improve figure readability. Category label is
marked in the center in green.

are found to be more typical representations of birds than
“toucans” and “penguins” across cognitive domains, includ-
ing language (Meints, Plunkett, & Harris, 1999; Rosch, 1975)
and vision (Maxfield, Stalder, & Zelinsky, 2014). Tradition-
ally, category typicality has been measured using rating or
decision tasks (Rosch, 1975), production tasks (Rosch, Simp-
son, & Miller, 1976), or inductive-reasoning tasks (Osher-
son, Smith, Wilkie, Lopez, & Shafir, 1990), all of which ask
the participant to consider a specific word in relation to the
broader category label. Recent work also suggests that com-
putational models of language learn category typicality from
the statistical usage distributions of everyday language (Lake
& Murphy, 2023; Misra, Ettinger, & Rayz, 2021).

In this experiment, we build a typicality-rating experiment
using GRIS, finding that manipulating words in space both
1) replicates previous work and 2) provides more accurate
representations of category typicality than a number of com-
putational models.

Design & Procedure

Stimuli We used eight of the original ten categories from
Rosch (1975); all items were in English. Each category has
a list of approximately 50-60 words with corresponding typi-
cality ratings; we use these ratings as our ground truth. To test
whether the presence of different words modified typicality
ratings, we constructed eight items that used ten words from
each category; we did not use all of the words from Rosch
(1975), as there would be too many words for participants to
move on the screen.

Procedure A sample item for Experiment 2 is visualized
in Figure 4. Participants saw a canvas with a word bank be-
low. In the middle of the canvas was a bolded category label
(i.e. SPORTS). Participants were told to move words from
the bank onto the canvas according to how “typical” an ex-
ample the word was of the category: words that were more
typical examples of the category should be placed closer to



Figure 5: Correlation results for Experiment 2. The x-axis
indicates the Z-scored distance from center for a word, and
the y-axis indicates the original ratings from Rosch (1975).

the category label.

Participants As in Experiment 1, twenty-five participants
were recruited using the online research platform Prolific.
Participants were all native English speakers between the
ages of 18 and 55.

Results
As in Experiment 1, we collected the final positions for all
words once the trial was complete. For each trial, we cal-
culated every word’s distance from the center; we z-scored
these distances by participant to ensure that all participants
were comparable in how they used the space.

Experimental results are visualized in Figure 5. We find
a strong correlation (r= 0.78) between the original rankings
from Rosch (1975) and the distance of each word from its
category label in our study, indicating that GRIS can be used
to replicate prior category typicality results.

Computational Analyses For our computational analyses,
we extracted vector representations of words from three mod-
els: GLoVe 6B.300D (Pennington, Socher, & Manning,
2014), BERT (Devlin, 2018), and GPT2 (Radford et al.,
2019). For the non-contextual model (GLoVe), we gathered
the raw vectors for both the word and the category label. Fol-
lowing Misra et al. (2021), for both of the contextual mod-
els (BERT & GPT2), we framed each word X with its sen-
tence label Y in the following way: A(n) X is a typical Y.;
however, instead of gathering the probability of each word
X in the sentence, we extracted the vector representations of
both the word and the label using the minicons Python pack-
age (Misra, 2022). Approaching our computational analyses
in these ways allows us to most directly compare the repre-
sentational spaces constructed in the human experiment with
those generated by computational models of language; our
approach differs from that of Misra et al. (2021), which con-

Figure 6: Correlation metrics between model representations
and experimental results. Each cell corresponds to the Pear-
son’s correlation coefficient between the models and experi-
mental measures on the x- and y-axes.

ducts behavioral analyses using model log-probabilities.
For each of the three models, we computed the Euclidean

distance between the vectors for every word and its corre-
sponding category label.5 We then calculated the Spearman’s
correlation for all possible model comparisons.

Results for these multiple-correlation analyses are visual-
ized in Figure 6. We find that GRIS is the only set of represen-
tations that connect a word to its category label in a manner
that is comparable to Rosch (1975); the distances between
words and their labels for GLoVe representations weakly cor-
relate with the original Rosch rankings and our experimental
data.

Discussion
In this experiment, we replicated prior typicality representa-
tions for eight categories. Experiments 1 and 2 show how
GRIS can reliably replicate prior results; this experiment also
demonstrates how GRIS builds constructs representational
spaces more accurately than a number of well-established
computational models. These findings differ from Misra et
al. (2021) likely due to the fact that we are conducting rep-
resentational analyses and not behavioral ones: while previ-
ous computational work has shown that behavioral measures
align well with human behavior, our work demonstrates that
studies of human representations cannot rely on vectors gen-
erated by these models.

Experiment 3: Multi-dimensional Similarity
In the previous two experiments, we demonstrated how GRIS
can be used to both replicate and provide further detail about
prior studies. In this experiment, we showcase how GRIS
can be used to advance new questions within an established
literature in cognitive science: pattern recognition.

For decades, cognitive scientists have studied how peo-
ple recognize patterns across a variety of cognitive do-
mains (Chater & Vitányi, 2003; Edelman, 1999; Edelman &

5Analyses using standardized cosine similarity and Spearman’s
rank correlation coefficient were also conducted; Euclidean distance
performed best in the correlation analyses.



Figure 7: Sample Connections puzzle (left) with solution (right). Colors reflect difficulty, as determined by the editors of the
publication: yellow is the easiest, green is the second-easiest, blue is the second-hardest, and purple is the hardest.

Duvdevani-Bar, 1997; Reed, 1972). We contribute to this lit-
erature by examining how one form of pattern recognition –
similarity assessments – arises during language processing.

Prior work suggests that the cognitive sources of similarity
are a concept’s familiarity (strength in memory), association
(relationships with other concepts), and inherent perceptual
likeness (surface appearance); see Hiatt and Trafton (2017)
for an overview. Linguistic similarity, broadly defined, has
also been shown to influence pattern recognition. For ex-
ample, semantic similarity is well-known to produce prim-
ing effects (McNamara, 2005; Neely, Keefe, & Ross, 1989;
Shelton & Martin, 1992), and, while less studied, syntactic
similarity has shown similar effects (Lester, Feldman, & del
Prado Martı́n, 2017). Orthographic similarity improves recall
accuracy in a probed serial-recall task (Lin, Chen, Lai, & Wu,
2015), and phonological similarity has been shown to facili-
tate the learning of novel words (Papagno & Vallar, 1992).

While each of these features contributes to overall percep-
tion of similarity between linguistic units, what kinds of sim-
ilarity do people optimize for? Importantly, this research
question would be difficult to test with standard paradigms,
as it involves significant numbers of pair-wise comparisons
that would be both costly to run and difficult to interpret. In
this experiment, we demonstrate how the drag-and-drop func-
tionality of GRIS-based experiments easily allows us to de-
termine how different types of similarity are represented and
prioritized among each other.

Data
Data for this experiment come from Connections, a free,
publicly-available game hosted by The New York Times. In
this game, players see a grid of 16 words and are told to
separate the words into four distinct groups that are labeled;
each item belongs to only one group. Importantly, each group
of four words forms a labeled category, and these categories
have varying difficulty: yellow groups are the easiest, green
groups the second-easiest, blue groups the second-hardest,
and purple groups the most difficult.6 A sample item and its
corresponding solution are shown in Figure 7.

6These difficulties are suggested by The New York Times; we do
not focus on whether these difficulties are accurate, instead studying
the cognitive question surrounding similarity comparisons.

Figure 8: Distribution of classifications by difficulty. Diffi-
culty levels closer to 0 are considered easier.

For 300 puzzles, two annotators categorized each group
of words into one of three possible classifications: Seman-
tic Association (e.g., “wet weather”: hail, rain, sleet, snow),
World Knowledge (e.g., “NBA teams”: bucks, heat, jazz,
nets), and Linguistic Reference (e.g., “palindromes”: kayak,
level, mom, race car). As visualized in Figure 8, we see that
indeed some similarities are considered more difficult than
others: semantic association groups tend to occupy the easier
categories, world knowledge groups tend to occupy the mid-
dle difficulties, and abstract linguistic reference groups tend
to occupy the most challenging difficulties.

Design & Procedure
Stimuli From our annotated data, we selected 10 puzzles
that had at least two of the classifications. Given that we are
using puzzles generated by the publication, we were unable to
perfectly balance the different classifications across all puz-
zles.7

Procedure Similar to Experiment 2, participants saw a
blank canvas with a word bank of words below. Participants
were instructed to move these words onto the canvas accord-
ing to how similar they are; similar words should be placed
closer together. Participants were instructed to use as much
of the canvas as they felt was appropriate.

7Instead, classifications were balanced to be approximately 40%
semantic association, 30% world knowledge, and 30% linguistic ref-
erence.



Figure 9: Average distance by classification for Experiment
3. Notches indicate bootstrapped 95% CIs.

To train them on the task but to avoid biasing their deci-
sions, participants completed two practice trials prior to the
experiment where they grouped both shapes and numbers.

Participants Nineteen native speakers of English between
the ages of 18 and 55 were recruited on Prolific.

Results
For each trial, we collected the final position for all words.
For every group within each trial, we computed two distance
comparisons. WITHIN GROUP distances were computed by
calculating the average distance between every word within
each group with other members of that same group. OUTSIDE
GROUP distances were computed by calculating the average
distance between every word within a group with every other
word not in that group.

Results are visualized in Figure 9. To determine how peo-
ple used distance to group similar words together, we fit a lin-
ear mixed-effects regression model that predicted DISTANCE,
with fixed effects of COMPARISON (within group/outside
group), CLASSIFICATION (semantic association/world expe-
rience/linguistic reference), and their full interactions, along
with random intercepts for participants, items, and puzzle dif-
ficulty.8 We find a main effect of COMPARISON, such that
WITHIN GROUP comparisons are significantly closer together
than OUTSIDE GROUP comparisons (β = -2.323, SE = 0.772,
t=-3.263, p <0.01). Additionally, we report a significant in-
teraction between COMPARISON and CLASSIFICATION, such
that SEMANTIC ASSOCIATION groups clustered significantly
closer together than LINGUISTIC REFERENCE groups in the
WITHIN GROUP comparison (β = -3.085, SE = 0.884, t=-
3.491, p <0.001).

8The complete model formula was: DISTANCE ∼ COMPARI-
SON*CLASSIFICATION + (1 | item) + (1 | participant) + (1 | diffi-
culty). The baseline conditions were the OUTSIDE GROUP and LIN-
GUISTIC REFERENCE groups, respectively.

Discussion

In this experiment, we showed that certain similarity patterns
are easier to find than others. More specifically, this experi-
ment showed that groups of words that pattern according to
semantic association are easiest to find. These findings may
derive from the fact that semantic association requires less
reasoning to identify possible clusters of words, compared to
other, more abstract classifications.

Beyond these results, we argue that the drag-and-drop
paradigm of GRIS-based experiments best serve the complex
relationships between representations and reasoning: other
paradigms – including rating tasks, forced-choice tasks, and
priming tasks – would require significantly more pairwise
comparisons to accomplish the results of this study.

Why Use GRIS?

In this paper, we have shown how GRIS allows researchers
across the cognitive sciences to test a large amount of data si-
multaneously (Experiment 1), while also evaluating the rela-
tive comparisons between different kinds of stimuli (e.g. text,
image, audio). For example, GRIS allows experimenters to
capture individual differences in representational spaces. Per-
ception of similarity and difference is highly individualized
(Simmons & Estes, 2008); GRIS provides a representation of
the idiosyncrasies of an individual’s representational spaces
both within class (Experiment 2) and across classes (Experi-
ment 3), while also providing information about the relative
relationships between objects on the grid across participants.

Additionally, GRIS studies mimic the representational
spaces constructed by computational models of language.
Much work in cognitive science has shifted toward compu-
tational approaches, especially when evaluating representa-
tions (Achananuparp, Hu, & Shen, 2008; Deudon, 2018; Hi-
att & Trafton, 2017; Mandera, Keuleers, & Brysbaert, 2017).
Models for evaluating relationships between words use dis-
tributional spaces (e.g. Deudon, 2018) or representational
analyses of embeddings to obtain similarity measurements
of words or sentences. These measurements are often con-
sidered proxies to human representation spaces, which re-
searchers cannot actually access. In this work, we show that
these computational representations are not reliable proxies
of human similarity, but that GRIS does provide an efficient
way to collect such judgments.
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