



**Research Question** 

★ Contextual word embeddings are assumed to capture semantic info. How sensitive are these embeddings to non-semantic features in text input? Our approach: a simple character swapping procedure to introduce minor orthographic noise.

## Background

- Prior work has investigated the effect of noise on downstream task performance [1, 2, 3].
- Known problems with CWEs generated with PLMs (anisotropy, rogue dimensions) [4, 5].
- $\rightarrow$  No work on the effect of textual noise on contextual embeddings.

## Methods

- → Character swapping procedure: swap a character in each word with a random case-matched character (n=68k).
- → Compare **similarity of edited word** embedding and unedited word embedding, both with and without 100 words of context from Wikitext.
- $\rightarrow$  Similarity metrics: cosine similarity, Spearman correlation (to mitigate effects of anisotropy)

# **Semantics or spelling? Probing contextual word embeddings with orthographic noise** Jacob A. Matthews, John R. Starr, and Marten van Schijndel Cornell University

|                        |            | Effect on Tokenization |                                                  |
|------------------------|------------|------------------------|--------------------------------------------------|
| Model                  | Word       | Edited                 | Word Tokens                                      |
| GPT-2<br>BERT<br>XLNet | contenders | contelders             | "contenders"<br>"contender", "s"<br>"contenders" |





#### Tokenization

Methods like BPE [6] result in the majority of words being represented by 1-3 tokens. Minor orthographic noise causes complex and unpredictable "splitting" in token-level

### Results

★ We find that CWEs are **highly sensitive** to

• Sensitivity is **related to subword tokenization:** 

Single character swaps (particles vs partfcles) result in up to 60% loss of a word's semantic

Most English words are represented by 1-2 Context does not significantly mitigate this

#### References

[1] Xue et al. 2022. "ByT5: Towards a token-free future with pre-trained byte-to-byte models". TACL. [2] Niu et al. 2020. "Evaluating robustness to input perturbations for neural machine translation". ACL. [3] Karpukhin et al. 2019. "Training on synthetic noise improves robustness to natural noise in machine translation". W-NUT 2019. [4] Kawin Ethayarajh. 2019. "How contextual are contextualized word representations? Comparing the geometry of BERT, ELMo, and GPT-2 embeddings". EMNLP-IJCNLP [5] Timkey and van Schijndel. 2021. "All bark and no bite: Rogue dimensions in transformer language models obscure representational quality". EMNLP [6] Sennrich et al. 2016. "Neural machine translation of rare words with