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Roadmap

1. What do we want from our representations?
2. How do we interpret representations?
3. How do we test for “robust” representations?

4. How do humans determine representational

similarity?
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1. What do we want from
our representations?
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2. How do we interpret
representations?



All Bark and No Bite: Rogue Dimensions in Transformer Language
Models Obscure Representational Quality

William Timkey and Marten van Schijndel
Department of Linguistics
Cornell University
{wpt25|mv443}@cornell.edu

EMNLP 2021

will Marty
(with long hair) (with normal hair)
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Anisotropy: ZA
representations occupy a y
(small) region in the A1
space due to a few pave% ,
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Mimno & Thompson (2017); Ethayarajh (2019)



Checking for anisotropy:

d
. .. . UiVvi
Cosine similarity: cos(u,v) H”Hllvll Y H“”L”
f:
.. can be broken down into a CCiuy) =
dimension-wise product: lul ][V

.. and we can measure the
relative contribution of each

. . {Iav}’a}ﬁs
dimension across a COrpus:
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Model Layer 1 2 3 A(fe)

GPT-2
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Word2Vec
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Model Layer 1 2 3 A(fe)

GPT-2

BERT

RoBERTa

XL Net

Word2Vec
GloVe
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The vector space is very anisotropic...

Model Layer 1 2 3 A(fr)
GPT-2 11 0.275 0.269 0.265 0.640

12 10.763 0.131 0.078| 0.885
BERT 10 0.817 0.004 0.003 0.396

11 0.884 0.003 0.002 0.506
RoBERTa 7 0.726  0.193 0.032 0.705
12 0.663 0.262 0.020 0.745

XLNet 10 0.990 | 0.000 0.000 0.887
11 0.996 | 0.001 0.000 0.981
Word2Vec 0.031 0.023 0.023 0.130
GloVe 0.105 0.096 0.095 0.104
1
(ff Z CCi(fe(xa), fe(Ya))

{Iav}a’}"cs



... meaning cosine only uses 1-5 dimensions:

xlnet-base-cased layer # 12 gpt2 layer # 12

Similaritv

roberta-base layer # 12 bert-base-cased layer # 12
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Standardization is a possible fix:

For each dimension:
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Takeaway:

Transformer representation
spaces are highly anisotropic,
and raw cosine similarity is not
a reliable similarity measure.
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3. How do we test for
“robust” representations?



Semantics or spelling? Probing contextual word embeddings with
orthographic noise

Jacob A. Matthews John R. Starr Marten van Schijndel
Cornell University
{jam963, Jrs673, mv443}@cornell.edu

Jacob
(with long hair)




Stars with cooler outer atmospheres , 1ncluding
the Sun , can form various diatomic and polyatomic
molecules . = = = Diameter = = = Due to their
great distance from the Earth , all stars except
the Sun appear to the wunaided eye as shining
points 1n the night sky that twinkle because of
the effect of the Earth 's atmosphere . The Sun 1is
also a star , but 1t 1s close enmugh to the Earth
to appear as a disk 1nstead , and to provide
daylight . Other than the Sun , the star with the
largest



Stars with cooler outer atmospheres , 1ncluding
the Sun , can form various diatomic and polyatomic
molecules . = = = Diameter = = = Due to their
great distance from the Earth , all stars except
the Sun appear to the wunaided eye as shining
polints 1n the night sky that twinkle because of
the effect of the Earth 's atmosphere . The Sun 1is
also a star , but 1t 15 close enmugh o tChe Farth
to appear as a disk 1nstead , and to provide
daylight . Other than the Sun , the star with the
largest



enough







The Set-Up:

Model Word Edited Word Tokens Edited Tokens
GPT-2 “contenders” “cont”, “e”, “1d”, “ers”
BERT contenders| contelders | “contender”, “s” | “‘con”, “tel”, “ders”
XLNet “contenders” “con”, “tel”, “der”, “s”

Five models: Two kinds of analyses:

1. BERT 1. Distribution shifts

2. BLOOM 1. Alphabetic

3. GPT-2 2. English

4. RoBERTa 2. Similarity

5. XLNet 1. Without context

o 2. With context
Data: wikitext-2
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Distribution of token length shifts higher...
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Distribution of token length shifts higher...

40 1

Percent

Percent (Noised)

0

40 1

20 -

Alphabetic English

enough

0

1 2 3 4 5 6 7 0 1 2 3 4 5
Token length Token length

6

Token Length -> token length of the word

7

Model
B BERT
[ BLOOM
B GPT
[ RoBERTa
[ XLNet



... and words with more tokens are more robust!
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Token Length -> token length of original (unedited) word

Standardized Similarity -> sim(original, edited)




... and words with more tokens are more robust!
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... and words with more tokens are more robust!
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Takeaway:

Much of a word’s semantic identity is
lost when a single character is changed,
challenging the assumption that CWEs

robustly capture word-level semantic

information.
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5. How do humans
determine similarity?



(normal hair)
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Capturing human similarity judgments:

a) How similar are trees &
bushes on dimension X?

\ s

b) Are bushes or leaves more
similar to trees on dimension X?

The issues with these methods:
1. Judgments are isolated from context - similarity is contextual
2. Judgments are isolated from each other - similarity is multi-faceted

Tversky (1977); Goldstone et al. (1991); Medin et al. (1993); inter alia



GRIS: A new psycholinguistic paradigm

(Generating Representations In Space)

"N K Bhd
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hair

landlord asparagus marathon

* Place objects (text, images, audio) onto labeled canvases.

* Tracks when & where each object was placed.

* Many customizable features!*

*Feel free to ask about these features!



Our test bed: The NYT Connections!

KAYAK SNOW BUCKS HAIL
OPTION TAB MOM NETS

LEVEL RAIN HEAT RETURN

JAZZ SHIFT RACE CAR SLEET

Samadarshi et al. (2024)



Our test bed: The NYT Connections!

KAYAK SNOwW BUCKS HAIL HAIyiTAI,‘:fi‘L‘ETE*T'fS“OW

« A very difficult task (for humans and models!)

« >300 puzzles with labels and difficulty (yellow < green < blue < purple)

Samadarshi et al. (2024)
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Proportion of Each Category By Difficulty
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Some similarities look more difficult than others...

Fovenen postact Lngis Res 1) Are purple categories
actually more difficult than
others?

roportion

Life Experien

’ Semantic Wld Ohg ph Ph Ig IMphIgI Sy tttttttttttttt
e

I | I | | ‘ | 2) Do people find linguistic
I|| ||| | || || L || reasoning more difficult than

ol - other kinds of reasoning?




Measuring Similarity with GRIS:

BBBBB

rent cream terrier red blue | s

green hair landlord asparagus marathon
EEEEEEEEEEEEEEEEEEE
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* People complete the task that you were asked to complete,
with very similar instructions.

* We track incremental and final word positions.




KAYAK SNOW BUCKS HAIL

OPTION TAB MOM NETS

LEVEL RAIN HEAT RETURN

JAZZ SHIFT RACE CAR SLEET
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Higher difficulties are harder to group:

Average Distance by Difficulty [N=8]
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Higher difficulties are harder to group:
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* Words within a category
are often close
together...

e ... though difficulty
modulates this distance
gradually.



Higher difficulties are harder to group:
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Some kinds of similarities are easier:

Average Distance by Classification [N=8]
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Some kinds of similarities are easier:
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* Simple semantic
association is easy.

e Other kinds of
associations are difficult.



Some kinds of similarities are easier:

Average Distance by Classification [N=8]
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Takeaway:

Within their representational spaces,
humans display similarity asymmetries.

(and... we hope that you can try out GRIS soon!)



Thanks!
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