A first look at mind rhymes

John R. Starr UC Berkeley Phorum February 25th, 2022

1

The Team

Helena Aparicio

Marten van Schijndel

Overview

- 1. Our cognitive model
- 2. Mind rhymes
- 3. Data
- 4. Experimental component
- 5. Computational component
- 6. Conclusion & future directions

Brief disclaimer: taboo words referring to bodily fluids, derogatory or discriminatory language, and other NSFW topics may be discussed briefly

Initial Takeaways

- Mind rhymes provide a clear look into linguistic phenomena that require dual-message processing and resolution
- Metrical structure improves rhyme prediction
- Global semantic cues drive the retrieval process when there is a phonological violation

1. Our Cognitive Model

Dissecting Simple Linguistic Signals

Dissecting Complex Linguistic Signals:

<u>INPUT</u>

"I can't wait to spend my weekend grading."

OUTPUT

"I can't wait to spend my weekend grading."

> "I don't want to grade at all this weekend."

Dissecting Complex Linguistic Signals

2. Mind Rhymes

Enter the Mind Rhyme!

A Simple Definition of Mind Rhyme

"A form of rhyme subversion where the rhyming intended target (IT) is substituted by an unrhyming, overt word (OT), often for humorous effect."

Basic Examples of Mind Rhymes

Call me old and make me cry /	
Laughing's like a piece of	(cake / pie)

Winter's a good time to stay in and cuddle / But put me in summer and I'll be a _____. (happy snowman / puddle)

Now they're going to bed / And my stomach is sick / 'cause it's all in my head / But she's touching his _____.

(chest / dick)

Nuances of Mind Rhymes

Work all night, I'm always <u>tired</u> / I hope my boss doesn't get me _____.

My uncle thinks I'm <u>barmy</u> / because I don't pack my bag and join the _____.

He's limber-slouched against a <u>post</u> / and tells a friend what matters _____.

(laid off = fired)

(navy ~ army)

(least \neq most)

Other Features of Mind Rhymes – Meter, Taboo

People say that summer's never cool / but when I'm hot I jump inside the _____. (creek / pool)

binary feet

Schmidt-Kassow & Kotz (2009); Rothermich et al. (2011); Pitt & Samuel (1990); Quene & Port (2005); Niruala et al. (2020); Jay et al. (2008)

Our Questions (Broadly)

- 1. What linguistic signals cue mind rhyme retrieval?
- 2. How do quantitative measures of information processing align/differ with empirical studies?

3. Data

John's Rhyme Subversion Corpus (JRS-C)

- Mind rhymes gathered from:
 - Humor websites
 - Scraping lyrics from comedy musicians
 - My own brain
 - The graciousness of others

• Data annotated for:

- Taboo
- Metrical structure
- Relationship between targets
- Word frequency (COCA)
- <u>210</u> rhyming pairs (<u>420</u> total targets) altogether have been processed

Chicago Rhyming Poetry Corpus (CRPC)

- Corpus of several hundred poems from the 15th-20th centuries
- All poems annotated for rhyme scheme
 - 18 RHYME a a b c b c d e f d f e
 - 19
 - 20 Exile of immortality, strongly wise,
 - 21 Strain through the dark with undesirous eyes
 - 22 To what may lie beyond it. Sets your star,
 - 23 O heart, for ever! Yet, behind the night,
 - 24 Waits for the great unborn, somewhere afar,
 - 25 Some white tremendous daybreak. And the light,

4. Experimental Component

Experimental Questions

• Are mind rhymes truly a legitimate and predictable phenomenon?

• Do people prefer phonological or semantic continuations when facing a violation of the linguistic signal?

Cloze Task

The poems I write are a real delight! So please be polite when the rhyme is not _____.

Fill in the blank:

Details: 19 participants, 16 mind rhyme examples per participant

Predictions: people will choose the intended target (IT) over all potential targets

Cloze Task (Results pt. 1)

Cloze Task Alignment (Corrected)

Cloze Task (Results pt. 2)

24

The Covered Box Task and Mind Rhymes

Experimental Items

- 1. Intended Target (IT):
- 2. Overt Target (OT):
- 3. IT rhyme competitor (IT-RC):
- 4. Semantically distant word from IT:

"blue" "orange" "stew" "couches"

The Covered Box Paradigm and MRs

- Details: 24 participants, 10 mind rhyme examples per participant
- Predictions:
 - IT should be accepted every time
 - OT should be accepted sometimes, rejected in others
 - IT rhyming competitors should be rejected nearly every time
 - IT distant competitors should be rejected every time

The Covered Box Paradigm (Results)

Experimental Conclusions

- Mind rhyme is a salient phenomenon (to native speakers of English, at least)
- Despite the obvious rhyme scheme, people prefer the OT over the rhyming competitors
- What is special about the OT?

5. Computational Component

Computational Questions We are Examining

- 1. Can models distinguish between mind rhymes and true rhyming data?
- 2. Can models distinguish between OT and IT targets within mind rhymes?
- 3. Is mind rhyme retrieval motivated by a cue outside of the syntactic or phonological domains, as suggested by our experimental work?

How Can We Quantify Information?

- If we have a large amount of data and a tough computer, we can get probability distributions for every word within the data!
- In this way, we can determine which words are more or less surprising given a context:

• Or: surprisal(x) = -log₂p(x)

Language Models

1. KenLM

- N-gram language model
- Trained on 6 million sentences from Project Gutenberg
- Captures local-coherence surprisal

2. Roark (2001) Parser

- Top-down syntactic parser
- Trained on sections 2-21 of the Penn WSJ Treebank
- Captures syntactic surprisal

33

Interim Conclusions

- 1. Language models can decipher differences between real rhymes, fake rhymes, and mind rhymes
- 2. Local and syntactic surprisal does not motivate the special status of the OT, suggesting this cue must be driven by another aspect of the linguistic signal.

Measuring Semantic Similarity

• Take the following sentence:

I have always wanted a pet dog.

• What other words can take the position of the underlined word?

I have always wanted a pet <u>cat</u>.

? I have always wanted a pet rooster.

Pennington et al. (2014)

Cosine Similarity Analysis

Looking at our data, we take the cosine similarity of these pairs:

- 1. OT/IT
 - The mind rhyme pair!
- 2. OT/IT-rhyme-competitor
 - Covers potential relationship with other rhyming targets
- 3. Shuffled-OT/IT
 - Covers if there is a general pairing across OTs to a random target
- 4. IT/IT pairs
 - Covers the idea that perhaps all ITs are similar to one another

Cosine Similarity (Results pt. 1)

Mind Rhyme Pairs and Variations (No Taboo Split)

Cosine Similarity (Results pt. 2)

Mind Rhyme Pairs and Variations (With Taboo Split)

Summary of Computational Component

Regarding our previous questions:

- Models <u>can</u> use surprisal to distinguish between a real rhyme and a mind rhyme target (OT or IT), but they <u>cannot</u> use surprisal to distinguish between the OT and IT.
- 2. The global semantic relationship between OT and IT is likely the cue that aids retrieval

6. Conclusion & Future Directions

Conclusions

- Mind rhymes permit a concrete pathway into investigation of phenomena such as sarcasm, irony, and humor
- Mind rhymes suggest that the necessary cue for retrieving an implicit message must be the global semantic relationship between the intended target and the overt target
 - Holds even when phonological signal is predictable

Future Directions

• Can we alter people's predictions by giving them an incorrect OT?

Christmas time is full of cheer. All the children are without _____

(worry / fear)

(alcohol / beer)

- Why do taboo targets behave so differently?
- Puns?

References

1. Hale, J. (2001). A probabilistic Earley parser as a psycholinguistic model. In Second meeting of the north american chapter of the association for computational linguistics.

2. Heafield, K. (2011, July). KenLM: Faster and smaller language model queries. In Proceedings of the sixth workshop on statistical machine translation (pp. 187-197).

3. Holdefer, C. (2009). "Shaving Cream" and other mind rhymes. The Antioch Review, 67(1), 158–163.

4. Levy, R. (2008). Expectation-based syntactic comprehension. Cognition, 106(3), 1126-1177.

5. Nakassis, C., & Snedeker, J. (2002). Context as relational cues in children's recognition of irony. Proceedings of the Annual Boston University Conference on Language Development, 26(2), 429–440.

6. Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), 1532-1543.

7. Pitt, M. A., & Samuel, A. G. (1990). Attentional allocation during speech perception: How fine is the focus? Journal of Memory and Language, 29(5), 611–632. https://doi.org/10.1016/0749- 596X(90)90055-5

8. Quene, H., & Port, R. F. (2005). Effects of timing regularity and metrical expectancy on spoken-word perception. Phonetica, 62(1), 1-13.

9. Read, K., Macauley, M., & Furay, E. (2014). The Seuss boost: Rhyme helps children retain words from shared storybook reading. First Language, 34(4), 354–371. https://doi.org/10.1177/0142723714544410

10. Roark, B. (2001). Probabilistic top-down parsing and language modeling. Computational linguistics, 27(2), 249-276.

11. Roark, B., Bachrach, A., Cardenas, C., & Pallier, C. (2009, August). Deriving lexical and syntactic expectation-based measures for psycholinguistic modeling via incremental topdown parsing. In *Proceedings of the 2009 conference on empirical methods in natural language processing* (pp. 324-333).

12. Rothermich, K., Schmidt-Kassow, M., & Kotz, S. (2012). Rhythm's gonna get you: Regular meter facilitates semantic sentence processing. Neuropsychologia, 50, 232–244. 13. Schmidt-Kassow, M., & Kotz, S. A. (2009). Event-related brain potentials suggest a late interaction of meter and syntax in the P600. Journal of Cognitive Neuroscience, 21(9), 1693–1708. 19

Schwarz, F., Bill, C., & Romoli, J. (2016). Reluctant acceptance of the literal truth: Eye tracking in the covered box paradigm. In Proceedings of Sinn und Bedeutung, 61-78.
Woodland, J., & Voyer, D. (2011). Context and intonation in the perception of sarcasm. Metaphor and Symbol, 26, 227–239.

A Summary by my Co-author, @batmanpooppants

Norming Tasks

progress	progress
red insane	predicament six
How similar do these words sound on a scale of 1-5?	What is the meaning relationship of the two words on a scale from 1-5?
very different 1 2 3 4 5 very similar	no relationship 1 2 3 4 5 strong relationship
$1 = very \ different$, $5 = very \ similar$	1 = no meaning relationship, $5 = strong meaning relationship$

- Predictions:
 - MR pairs should be "very different" for sound, but show degrees of semantic relatedness
 - Intended rhyming targets should be "very similar" to other rhyming words, but show no semantic relatedness
 - Fillers should be unrelated in both meaning and sound

Relatedness Task (Phonological Results)

Phonological Task Judgments (Avg)

Relatedness Task (Semantic Results)

